
NP and NP-

Completeness

Introduction to Decision and

Optimization Problems

 Decision Problem: computational
problem with intended output of
“yes” or “no”, 1 or 0

 Optimization Problem: computational
problem where we try to maximize
or minimize some value

 Introduce parameter k and ask if the
optimal value for the problem is a
most or at least k. Turn optimization
into decision

Complexity Class P

 Deterministic in nature

 Solved by conventional computers in
polynomial time
• O(1) Constant

• O(log n) Sub-linear

• O(n) Linear

• O(n log n) Nearly Linear

• O(n2) Quadratic

 Polynomial upper and lower bounds

Complexity Class NP

 Non-deterministic part as well

 choose(b): choose a bit in a non-
deterministic way and assign to b

 If someone tells us the solution to a
problem, we can verify it in polynomial
time

 Two Properties: non-deterministic method
to generate possible solutions,
deterministic method to verify in
polynomial time that the solution is
correct.

Relation of P and NP

 P is a subset of NP

 “P = NP”?

 Language L is in NP, complement of
L is in co-NP

 co-NP ≠ NP

 P ≠ co-NP

Polynomial-Time Reducibility

 Language L is polynomial-time
reducible to language M if there is a
function computable in polynomial
time that takes an input x of L and
transforms it to an input f(x) of M,
such that x is a member of L if and
only if f(x) is a member of M.

 Shorthand, LpolyM means L is
polynomial-time reducible to M



NP-Hard and NP-Complete

 Language M is NP-hard if every other
language L in NP is polynomial-time
reducible to M

 For every L that is a member of NP,
LpolyM

 If language M is NP-hard and also in
the class of NP itself, then M is NP-
complete



NP-Hard and NP-Complete

 Restriction: A known NP-complete
problem M is actually just a special case of
L

 Local replacement: reduce a known NP-
complete problem M to L by dividing
instances of M and L into “basic units”
then showing each unit of M can be
converted to a unit of L

 Component design: reduce a known NP-
complete problem M to L by building
components for an instance of L that
enforce important structural functions for
instances of M.

TSP

 For each two cities, an integer cost is given to
travel from one of the two cities to the other. The
salesperson wants to make a minimum cost
circuit visiting each city exactly once.

3

1

1

1

2

2

3

4

1
2 2

1

2

2

4

4 1

5

1

i = 23

2

Circuit-SAT

Logic Gates

NOT

AND

OR 1

1

1 0 0

0

1 1

1

1

1

0

0

 Take a Boolean circuit with a single output
node and ask whether there is an
assignment of values to the circuit’s inputs
so that the output is “1”

Knapsack

 Given s and w can we translate a
subset of rectangles to have their
bottom edges on L so that the total
area of the rectangles touching L is
at least w?

s

L

1

2

3
4

5 6

7

PTAS

 Polynomial-Time Approximation
Schemes

 Much faster, but not guaranteed to
find the best solution

 Come as close to the optimum value
as possible in a reasonable amount
of time

 Take advantage of rescalability
property of some hard problems

Application

 Bin packing problem

 knapsack problem

 Mininum spanning tee

 Longest path problem

Assignment

Q.1)Differentiate between NP-hard &
NP-Complete.

Q.2) What is polynomial time
reducibility?

Q.3)What is relation between P and
NP.

