
NP and NP-

Completeness 



Introduction to Decision and 

Optimization Problems 

 Decision Problem: computational 
problem with intended output of 
“yes” or “no”, 1 or 0 

 Optimization Problem: computational 
problem where we try to maximize 
or minimize some value 

 Introduce parameter k and ask if the 
optimal value for the problem is a 
most or at least k. Turn optimization 
into decision 



Complexity Class P 

 Deterministic in nature 

 Solved by conventional computers in 
polynomial time 
• O(1)   Constant 

• O(log n)  Sub-linear 

• O(n)   Linear 

• O(n log n)  Nearly Linear 

• O(n2)   Quadratic 

 Polynomial upper and lower bounds 



Complexity Class NP 

 Non-deterministic part as well 

 choose(b): choose a bit in a non-
deterministic way and assign to b 

 If someone tells us the solution to a 
problem, we can verify it in polynomial 
time 

 Two Properties: non-deterministic method 
to generate possible solutions, 
deterministic method to verify in 
polynomial time that the solution is 
correct. 



Relation of P and NP 

 P is a subset of NP 

 “P = NP”? 

 Language L is in NP, complement of 
L is in co-NP 

 co-NP ≠ NP 

 P ≠ co-NP 

 



Polynomial-Time Reducibility 

 Language L is polynomial-time 
reducible to language M if there is a 
function computable in polynomial 
time that takes an input x of L and 
transforms it to an input f(x) of M, 
such that x is a member of L if and 
only if f(x) is a member of M. 

 Shorthand, LpolyM means L is 
polynomial-time reducible to M 

 



NP-Hard and NP-Complete 

 Language M is NP-hard if every other 
language L in NP is polynomial-time 
reducible to M 

 For every L that is a member of NP, 
LpolyM 

 If language M is NP-hard and also in 
the class of NP itself, then M is NP-
complete 

 



NP-Hard and NP-Complete 

 Restriction: A known NP-complete 
problem M is actually just a special case of 
L 

 Local replacement: reduce a known NP-
complete problem M to L by dividing 
instances of M and L into “basic units” 
then showing each unit of M can be 
converted to a unit of L 

 Component design: reduce a known NP-
complete problem M to L by building 
components for an instance of L that 
enforce important structural functions for 
instances of M. 



TSP 

 For each two cities, an integer cost is given to 
travel from one of the two cities to the other. The 
salesperson wants to make a minimum cost 
circuit visiting each city exactly once. 
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Circuit-SAT 

Logic Gates 
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 Take a Boolean circuit with a single output 
node and ask whether there is an 
assignment of values to the circuit’s inputs 
so that the output is “1” 



Knapsack 

 Given s and w can we translate a 
subset of rectangles to have their 
bottom edges on L so that the total 
area of the rectangles touching L is 
at least w? 
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PTAS 

 Polynomial-Time Approximation 
Schemes 

 Much faster, but not guaranteed to 
find the best solution 

 Come as close to the optimum value 
as possible in a reasonable amount 
of time 

 Take advantage of rescalability 
property of some hard problems 

 



Application 

 Bin  packing problem  

 knapsack problem 

 Mininum spanning tee 

 Longest path problem 



Assignment 

Q.1)Differentiate between NP-hard & 
NP-Complete. 

Q.2) What is polynomial time 
reducibility? 

Q.3)What is relation between P and 
NP. 


